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Abstract

The dynamics of the finite nonperiodic Toda lattice is an isospectral deformation of the finite
three-diagonal Jacobi matrix. It is known since the work of Stieltjes that such matrices are in
one-to-one correspondence with their Weyl functions. These are rational functions mapping the
upper half-plane into itself. We consider representations of the Weyl functions as a quotient of two
polynomials and exponential representation. We establish a connection between these represen-
tations and recently developed algebraic-geometrical approach to the inverse problem for Jacobi
matrix. The space of rational functions has natural Poisson structure discovered by Atiyah and
Hitchin. We show that an invariance of the AH structure under linear-fractional transformations
leads to two systems of canonical coordinates and two families of commuting Hamiltonians. We
establish a relation of one of these systems with Jacobi elliptic coordinates.
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1. Introduction

The Toda lattice is a mechanical system ofN particles connected by elastic strings. The
Hamiltonian of the system is

H =
N−1∑
k=0

p2
k

2
+

N−2∑
k=0

eqk−qk+1.
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Introducing the classical Poisson bracket

{f, g} =
N−1∑
k=0

∂f

∂qk

∂g

∂pk

− ∂f

∂pk

∂g

∂qk
,

we write the equations of motion as

q•
k = {qk,H} = pk, p•

k = {pk,H} = −eqk−qk+1 + eqk−1−qk , k=1, . . . , N − 1.

We putq−1 = −∞,qN = ∞ in all formulae. Following[10,19]introduce the new variables

ck = eqk−qk+1/2, vk = −pk.

In these variables

H =
N−1∑
k=0

v2
k

2
+

N−2∑
k=0

c2
k,

and

{ck, vk} = −ck

2
, {ck, vk+1} = ck

2
. (1.1)

The equations of motion take the form

v•
k = {vk,H} = c2

k − c2
k−1, c•

k = {ck,H} = ck(vk+1 − vk)

2
.

These equations are compatibility conditions for the Lax equationL• = [A,L], where

L =




v0 c0 0 · · · 0

c0 v1 c1 · · · 0
...

...
...

. . .
...

0 · · · cN−3 vN−2 cN−2

0 · · · 0 cN−2 vN−1




,

and

2A =




0 c0 0 · · · 0

−c0 0 c1 · · · 0
...

...
...

. . .
...

0 · · · −cN−3 0 cN−2

0 · · · 0 −cN−2 0




.

The Lax formula implies that the spectrumλ0 < · · · < λN−1 of L remain fixed. It is known
since the work of Stieltjes[25], that the rational functionw(λ) = (R(λ)δ(0), δ(0)), where
R(λ) = (L − λI)−1 is the resolvent, plays the key role in reconstruction of the matrixL
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from its spectral data. It was encountered later in the spectral theory of the Sturm–Liouwille
operator[28], and received the name of Weyl function. Simply by expanding it in the
continued fraction

w(λ) = − 1

λ − v0 − c2
0

λ−v1− c21

λ−v2−···
c2
N−2

λ−vN=1

,

one can read the entries ofL. This fact is central to Moser’s solution of the nonperi-
odic Toda[21]. At the same time Stieltjes method appears to be a computational trick
and does not provide a conceptual explanation why the functionw(λ) actually deter-
minesL.

An attempt to solve an inverse spectral problem for the finite Jacobi matrix using algebraic-
geometrical approach was made at the beginning of 1980s by McKean[20]. It was realized
that the corresponding spectral curve is a singular reducible Riemann surface.

The recent interest in the spectral curves of finite Toda lattice stems from various sources.
One is the work of Seiberg and Witten[23,24] on supersymmetric Yang–Mills theories.
The smooth hyperelliptic spectral curves of the periodic Toda appear in the pure gauge
N = 2 SUSY Yang–Mills models in four dimensions[12]. The physically interesting
limit of the theory which corresponds to transition from the smooth hyperelliptic curve
to the singular one of McKean[20] was considered in[5]. Another source of interest
is the Camassa–Holm equation[7]. It is known, see[3,22], that the dynamics of the
so-called peakons solutions is isomorphic to an isospectral flow on the space of finite Jacobi
matrices.

A solution of nonperiodic Toda within algebraic-geometrical approach was obtained
recently in[18]. The poles ofw(λ) determine the curve and the zeros specify the divi-
sor of the Baker–Akhiezer function. This information uniquely specifies the BA func-
tion and therefore the matrixL. Whence that fact thatw(λ) determines the matrix can be
considered as a consequence of the Riemann–Roch theorem which guarantees unique-
ness of the BA function. Using BA functions we obtained in[18] the explicit formu-
lae for the solution, the symplectic structure and two systems of Darboux coordinates
for it.

The present paper combines ideas developed in[27] with algebraic-geometrical approach
of Krichever and Vaninsky[18]. It can be divided into two parts. In the first part of the
paper (Sections 2–5) we establish relations between the standard objects of spectral the-
ory and algebraic-geometrical constructions. We show how the BA function can be con-
structed from the orthogonal polynomial of the first kind and suitably normalized Weyl
solution. The rational functions which map the upper half-plane into itself are defined by the
formula

w(λ) = ρ0

λ0 − λ
+ · · · + ρN−1

λN−1 − λ
, ρk > 0. (1.2)

They are parameterized by 2N parametersρ’s and λ’s. The rational functions corre-
sponding to the Weyl functions of finite Jacobi matrices are specified by the condition∑

ρk = 1.
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We consider different representations of the Weyl functions. The first one, the ratio of
two monic polynomials,

w(λ) = − q(λ)

p(λ)

leads to the standard Abel map. Another, the exponential representation, which employs
Krein’s spectral shift functionξ(z)

w(λ) = 1

λ0 − λ
exp(Ξ(λ)), Ξ(λ) =

∫
ξ(z)

z − λ
dz

produces the Abel map in Baker’s form.
In the second part (Sections 6–9), we study the Atiyah–Hitchin bracket on rational func-

tions and its relation to the Hamiltonian formalism for the Toda lattice. As it was recently
discovered by Faybusovich and Gehtman[9], the AH bracket on rational functions can be
written as

{w(λ),w(µ)} = (w(λ) − w(µ))2

λ − µ
. (1.3)

The bracket(1.1)corresponds to the restriction of(1.3)on the (2N − 1)-dimensional sub-
manifold corresponding to Weyl functions ofN × N Jacobi matrices. We show that the
restricted bracket has two systems of canonical coordinates on symplectic leafs of the fo-
liation defined by level sets of the Casimir

∑
λk. The existence of these two canonical

coordinate systems is a consequence of invariance of the AH bracket under the group of
linear-fractional transformations

w → w′ = aw + b

cw + d
.

The first system of canonical coordinates is associated withN poles ofw(λ): λ0 < · · · <
λN−1. The half of variables isN − 1 points of the spectrumλ1, . . . , λN−1. Another half
are the functions ofq(λ) at these points

θk = log
(−1)kq(λk)

q(λ0)
, k = 1, . . . , N − 1.

This system is called action–angle coordinates. The verification of canonical relation is
obtained by computing residues. The associated Hamiltonians are

Hj = 1

j

∑
λj
n, j = 1, . . . , N.

They produce the standard Toda flows which preserve the spectrum.
The second system is coming fromN − 1 finite rootsγ1 < · · · < γN−1 of the equation

w(γ) = ρ0

λ0 − γ
+ · · · + ρN−1

λN−1 − γ
= 0.

The adjointN − 1 variables are

πk = log(−1)N+kp(γk), k = 1, . . . , N − 1.
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These are the divisor-quasimomentum coordinates. The Hamiltonians of this system
are

Tj = 1

j

∑
γj
n, j = 1, . . . , N − 1.

These Hamiltonians produce the flows transversal to the isospectral manifolds. These flows
preserve the divisor.

Now we will explain the origins of the divisor-quasimomentum coordinate system. Jacobi
[13, Lecture 26], introduced his famous elliptic coordinates as finite rootsγ0 < γ1 < · · · <
γN−1 of the equation

w(γ) = ρ0

λ0 − γ
+ · · · + ρN−1

λN−1 − γ
= 1.

TheseN roots are considered to be the functions ofN independentρ’s, while λ’s remain
fixed. In the case of finite Jacobi matrices this choice of parametersγ is bad. Due to the
constraint

∑
ρk = 1 they are functionally dependent. The same is true for any other constant

instead of 1. Only for the special value 0 the equationw(γ) = 0 has one “unmovable” root
γ0 = ∞ and all otherN − 1 finite roots are functionally independent. Whence the divisor
can be considered as a variant of the Jacobi elliptic coordinates.

The transformationw(λ) → w′(λ) = −1/w(λ) defines the dual Weyl functionw′. The
roots of the equationsw(γ) = 0 become poles of the functionw′(λ). The invariance of
the AH structure allows to establish canonical character of the divisor-quasimomentum
coordinates again by computing residues.

We would like to conclude this section with the following remark. The traditional study of
integrable dynamics is part of Hamiltonian mechanics with its standard objects like Poisson
and symplectic manifolds, vector fields, differential forms, etc. We demonstrate in this paper
that integrable dynamics on the space of Jacobi matrices or equivalently Weyl functions can
be reformulated and studied purely in terms of complex analysis.

Organization of the paper. In Section 2, we review standard constructions of spectral
theory of three-diagonal Jacobi matrices. InSection 3, we introduce the spectral shift func-
tion and establish the trace formulae. InSection 4, we consider the reducible Riemann
surface and show how the Baker–Akhiezer function can be constructed using the orthog-
onal polynomial of the first kind and suitably normalized Weyl solution. InSection 5, we
consider the representation of the Weyl function as a ratio of two polynomials and expo-
nential representation. We demonstrate how using these representations one can construct
the Abel map in the ordinary form and in the Baker form, correspondingly. We also de-
scribe the range of the map and show its’ one-to-one character. This section completes the
description of the spectral theory and its’ relation to algebraic geometry. InSection 6, we
introduce the Atiyah–Hitchin Poisson bracket and describe some of its’ elementary prop-
erties. InSection 7, we construct canonical variables for the AH bracket. We also construct
the Dirac restriction of the AH bracket on the submanifold of Weyl functions. We intro-
duce two systems of canonical coordinates for the restricted bracket inSection 8. We also
linearize the flow in terms of spectral shift function.Section 9describes the isospectral and
transversal flows.
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2. The direct spectral problem

Most of the material of this section can be found in[1] and presented here in order to set
notations. Consider a finite Jacobi matrix

L =




v0 c0 0 · · · 0

c0 v1 c1 · · · 0
...

...
...

. . .
...

0 · · · cN−3 vN−2 cN−2

0 · · · 0 cN−2 vN−1




.

It acts as a self-adjoint operator in the complexl2[0, N − 1] with standard orthonormal
basisδ(k) = (. . . ,1, . . . )︸ ︷︷ ︸

kth place

, k = 0, . . . , N − 1. The operatorL has simple spectrumλ0 <

· · · < λN−1 corresponding to normalized eigenvectorse(λk) = (e0(λk), . . . , eN−1(λk)),
k = 0, . . . , N − 1. LetE(λ) = ∑

λk<λ e(λk) ⊗ e(λk) be an orthogonal spectral measure of
L. Thus,

L =
∫

λdE(z), (2.1)

and

R(λ) = (L − λI)−1 =
∫

dE(z)

z − λ
. (2.2)

For any two vectorsu, v the Parseval identity holds

(u, v) =
∑
k

(u, e(λk))(v, e(λk)). (2.3)

We associate withL the eigenvalue problem

v0y0 + c0y1 = λy0, (2.4)

c0y0 + v1y1 + c1y2 = λy1, (2.5)

cn−1yn−1 + vnyn + cnyn+1 = λyn, n = 2, . . . , N − 2,

cN−2yN−2 + vN−1yN−1 + cN−1yN = λyN−1. (2.6)

The coefficientcN−1 is defined by the formulacN−1 = ∏N−2
k=0 c−1

k . For the system(2.4)–(2.6)
we introduce the solution

P(λ) : P−1(λ) = 0, P0(λ) = 1, . . . , PN(λ),

and for the system(2.5) and (2.6)

Q(λ) : Q0(λ) = 0, Q1(λ) = 1

c0
, . . . ,QN(λ).
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Let L[k,p] be the truncated matrix

L[k,p] =




vk ck · · · 0

ck vk+1 · · · 0
...

...
. . . cp−1

· · · · · · cp−1 vp


 . (2.7)

Then forn = 1,2, . . . , N − 1

Pn(λ) = (−1)n
det(L[0,n−1] − λI)∏n−1

k=0 ck
, (2.8)

and

Qn(λ) = (−1)n+1 det(L[1,n−1] − λI)∏n−1
k=0 ck

. (2.9)

Now we will use the solutionsP andQ to give formula(2.3)more concrete form.
ForP(λ) = (P0(λ), . . . , PN−1(λ)) from (2.8)we have

e(λk) = P(λk)
√
ρk, ρk = 1∑N−1

n=0 P2
n(λk)

. (2.10)

Thus(2.3) takes the form

(u, v) =
∫

ũ(λ)ṽ(λ)dσ(λ), (2.11)

where

ũ(λ) = (u, P(λ)), ṽ(λ) = (v, P(λ)), dσ(λ) =
∑

δ(λ − λk)ρk.

Moreover, using(2.10)we have

(e(λk), δ(0)) = √
ρk > 0,

N−1∑
k=0

ρk = 1. (2.12)

This implies, in particular, thatδ(0) is a cyclic vector forL.
For the Weyl function defined as

w(λ) = −QN(λ)

PN(λ)

formulae(2.8) and (2.9)imply

w(λ) = − (−1)N+1 det(L[1,N−1] − λI)

(−1)N det(L − λI)
= − (−1)N+1∏N−1

s=1 (γs − λ)

(−1)N
∏N−1

n=0 (λn − λ)
, (2.13)

where the rootsλ andγ interlace

λ0 < γ1 < λ1 < · · · < λN−2 < γN−1 < λN−1 (2.14)

due to the Sturm theorem.
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By constructionQN + wPN = 0 for all λ. Formulae(2.4)–(2.6)produce(L − λI)

(Q + wP) = δ(0) andQ + wP = R(λ)δ(0). Formula(2.2) implies

w(λ) = (R(λ)δ(0), δ(0)) =
∫

(δ(0),dE(z)δ(0))

z − λ
=
∫

dσ(z)

z − λ
. (2.15)

From(2.1) for the moments of the measure dσ we have

sk = (Lkδ(0), δ(0)) =
∫

λk dσ(λ). (2.16)

Using(2.12),

w(λ) = −
∞∑
n=0

snλ
−(n+1), where s0 = 1. (2.17)

We conclude this section with derivation of trace formulae. To simplify notations we assume
thatλ0 = 0. Then,(2.13)becomes

w(λ) = −1

λ

N−1∏
k=1

(
γk − λ

λk − λ

)
. (2.18)

After simple algebra,

γk − λ

λk − λ
= 1 +

∞∑
p=1

λ
p−1
k (λk − γk)

λp
=

∞∑
p=0

∆
p

k λ
−p, where ∆0

k = 1.

Furthermore,

w(λ) = −
∞∑
n=0


 ∑

p1+···+pN−1=n

N−1∏
k=1

∆
pk

k


 λ−(n+1).

Comparing it with(2.17)we obtain the trace formulae

sn =
∑

p1+···+pN−1=n

N−1∏
k=1

∆
pk

k . (2.19)

The first few are listed below

s1 =
∑
k

∆1
k, s2 =

∑
k

∆2
k +

∑
k1 �=k2

∆1
k1
∆1

k2
,

s3 =
∑
k

∆3
k + 2

∑
k1 �=k2

∆2
k1
∆1

k2
+

∑
k1 �=k2 �=k3

∆1
k1
∆1

k2
∆1

k3
, . . . .

To derive the standard trace formulae[14] from the resolvent expansion

R(λ) = (L − λI)−1 = − I

λ
− L

λ2
− L2

λ3
− · · · ,
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we obtain

w(λ) = − (Iδ(0), δ(0))

λ
− (Lδ(0), δ(0))

λ2
− (L2δ(0), δ(0))

λ3
− · · · ,

w(λ) = −1

λ
− v0

λ2
− v2

0 + c2
0

λ3
− · · · . (2.20)

Matching the coefficients in(2.17) and (2.20),

v0 =
∑
k

∆1
k, c2

0 =
∑
k

∆2
k −

∑
k

(∆1
k)

2, . . . .

3. The trace formulae via Krein spectral shift

We assumeλ0 = 0, then(2.13)becomes

w(λ) = −1

λ

det(L[1,N−1] − λI)

det(L|KerL⊥ − λI)
, (3.1)

whereL|KerL⊥ is a restriction ofL on the orthogonal compliment to KerL. By elementary
transformations the ratio of two determinants can be put in the form

w(λ) = −1

λ

N−1∏
s=1

(
γs − λ

λs − λ

)
= −1

λ
exp

N−1∑
s=1

∫ γs

λs

dz

z − λ

= −1

λ
exp(Ξ(λ)) = −1

λ
exp

∫
ξ(z)

z − λ
dz, (3.2)

where1

ξ(z) = nL|KerL⊥(z) − nL[1,N−1](z)

is the Krein spectral shift function[17]. This exponential representation of the Weyl function
has much wider range of applicability then formula(3.1), which requires separate existence
of determinants in the numerator and denominator. It can be obtained, for example, for
infinite unbounded matrices under very mild condition on closeness ofL[1,∞] andL|KerL⊥.

One can obtain trace formulae in terms offk = ∫
zkξ(z)dz entering into the asymptotic

expansion

Ξ(λ) = −
∞∑
n=0

fnλ
−(n+1).

Expanding the exponent in(3.2)and matching the coefficients with(2.17)

s1 = −f0, s2 = f 2
0

2
− f1, s3 = f0f1 − f2 − f 3

0

6
, . . . .

1 nL(z) is a counting function,nL(z) = #{eigenvalues ofL ≤ z}.
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Evidently, these formulae can be put in the form(2.19)using representation ofξ(z) as a
difference of two counting functions.

4. The spectral curve: the Baker–Akhiezer function

The functionw(λ) determines the matrixL or in another words the functionsw(λ) =
w(λ,L) are coordinates on the spaceL of all N ×N Jacobi matrices. The “index”λ which
labels the “coordinates” takes the values inC1\spec L. This statement goes back to Stieltjes
[25]. There are two standard ways to recoverL from w. The first is to expandw(λ) into
continued fraction, from which one can read the coefficient ofL. The second is to construct
polynomials orthogonal with respect to the spectral measure recovered fromw(λ). A three
term recurrent relation for these polynomials is, in fact, the matrixL. Recently, the classical
inversion problem, received a new, algebro-geometrical solution[18]. The main novel part
of Krichever and Vaninsky[18] is, the so-called, Baker–Akhiezer function for areducible
curve. This construction is described below.

We start with the standard Weyl solutionQ+wP and note that(Q+wP)/w is a solution
of (2.5) and (2.6)which is equal to 1 atn = 0 and vanishes atn = N for all λ. The vector
P is also a solution of(2.5) and (2.6)which is equal to 1 forn = 0 and all values ofλ and
vanishes atn = N for λ = λk. Thus we have a “gluing” condition

P(λk) = Q + wP

w
(λk). (4.1)

In other words, at the points of the spectrum the functionw(λ) conjugates two solutionsP
andQ + wP which vanish at the left(n = −1) or right (n = N) correspondingly.

Fig. 1. Riemann surface.
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The singular algebraic curveΓ (Fig. 1) is obtained by gluing at the points of the spectrum
two copies of the complex plane. Define Baker–Akhiezer function onΓ by the formula,
λ = λ(ε):

ψ(ε) =




P(λ) if ε ∈ Γ+,

Q + wP

w(λ)
if ε ∈ Γ−.

The functionψ is continuous onΓ due to the gluing condition(4.1). The BA function has
the only simple poles at the points of the divisor(γ1,−), . . . , (γN−1,−). At two infinities
the BA function has poles of prescribed order. These data determine the BA function and
therefore the operatorL. Thus, the uniqueness statement can be viewed as a consequence
of the Riemann–Roch theorem. This remark completes the description of the direct spectral
problem. The inverse problem can be solved using an explicit formula for the time-dependent
BA function (for details, see[18]).

5. The Abel map and the Jacobian

Let RatN be a set of all rational functions which map the upper half-plane into itself,
vanish at infinity and haveN poles. Any functionw(λ) from RatN has the form

w(λ) =
N−1∑
k=0

ρk

λk − λ
(5.1)

with real poles atγ0 < · · · < λN−1 andρk > 0. Forλ real below/above the spectrum the
functionw(λ) is positive/negative. Furthermore,

w′(λ) =
∑ ρk

(λk − λ)2
> 0,

andw(λ) continuously changes from minus infinity to plus infinity, whenλ runs between
two consecutive poles. Thus the functionw(λ) has exactlyN − 1 zerosγ ’s which interlace
λ’s as in formula(2.14).

Furthermore, any function from RatN can be represented as a ratio of two polynomials

w(λ) = − q(λ)

p(λ)
= −q0(−1)N+1∏N−1

s=1 (γs − λ)

(−1)N
∏N−1

n=0 (λn − λ)

= −q0λ
N−1 + q1λ

N−2 + · · · + qN−1

λN + p0λN−1 + · · · + pN−1
. (5.2)

The polynomials are defined up to a multiple factor. In formula(5.2) it is chosen such
that the leading coefficient of the denominator is 1, similar to(2.13). Evidently, the poly-
nomial q(λ) can be determined from its’ valuesq(λ0), . . . , q(λN−1) which are free
parameters.

Now we turn to the submanifold Rat′
N with

∑
ρk = 1. These are the functions from

RatN which are Weyl functions of finite Jacobi matrices. The valuesq(λ0), . . . , q(λN−1)
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are not independent anymore. Indeed, from the identity

− q(λ)

p(λ)
=
∑ ρn

λn − λ
,

and conditionp(λn) = 0 we obtainq(λk) = p′(λk)ρk. Therefore,

N−1∑
n=0

q(λn)

p′(λn)
= 1.

Due to the relationq0 = ∑
ρk, an another way to say thatw(λ) ∈ Rat′N is that the

polynomialq(λ) in (5.2) is a monic polynomial.
For a functionw(λ) ∈ Rat′N we define angle variables by the formula

θk = log
(−1)kq(λk)

q(λ0)
, k = 1, . . . , N − 1. (5.3)

There are exactlyk roots ofq(λ) betweenλ0 andλk and it changes signk times whenλ
varies fromλ0 to λk. Whence variablesθ’s are always real.

To clarify geometrical meaning of the variablesθ’s we introduce (Fig. 2) a standard
homology basis on the curveΓ corresponding to some Jacobi matrix. We define differentials
ωk by the formula

ωk =
[

1

z − λk

− 1

z − λ0

]
dz, k = 1, . . . , N − 1.

Evidently, the normalization condition holds∫
ap

ωk = 2πiδpk , k, p = 1, . . . , N − 1,

Fig. 2. Basis of circles.
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while b-periods ofω’s are real and infinite. For the variablesθ, we have

θk = πik + logq(λk) − logq(λ0)

= πik +
N−1∑
s=1

∫ γs

∞−

[
1

z − λk

− 1

z − λ0

]
dz = πik +

N−1∑
s=1

∫ γs

∞−
ωk. (5.4)

Therefore,θ’s are the values of the Abel map from the divisorγ1, . . . , γN−1 into RN−1,
the noncompact real part of the Jacobian. It will be shown that this map is onto.

Fix some matrixL0. All matrices with the same spectrumλ0 < · · · < λN−1 asL0
constitute a spectral class ofL0, which we denote byS(L0). The spectral classS(L0) is in
1:1 correspondence with Weyl functions from Rat′

N

w(λ) =
N−1∑
n=0

ρn

λn − λ
,

∑
ρn = 1.

Theorem 1.

(i) The variables γ1, . . . , γN−1 are coordinates on S(L0). Any sequence of γ’s which
occupies open segments λk−1 < γk < λk, k = 1, . . . , N − 1 corresponds to some
matrix from S(L0).

(ii) The variables θ1, . . . , θN−1 are coordinates on S(L0). Any sequence of θ’s from RN−1

corresponds to some matrix from S(L0).

Proof.

(i) The variablesγ ’s determine the roots ofq(λ) and therefore the functionw(λ). Whence,
γ ’s are coordinates.

To prove thatγ ’s are free pick any sequence ofγ ’s and formq(λ). Then, by Lagrange
interpolation

− q(λ)

p(λ)
=

N−1∑
n=0

q(λn)

p′(λn)

1

λn − λ
.

It is easy to check allρn = q(λn)/p
′(λn) are strictly positive. It remains to prove that∑

ρn = 1. Indeed, the formula

q(λ) =
N−1∑
n=0

q(λn)

p′(λn)

p(λ)

λ − λn

implies

1 = lim
λ→∞

q(λ)

λN−1
= lim

λ→∞
∑ q(λn)

p′(λn)

p(λ)

λN−1(λ − λn)
=
∑ q(λn)

p′(λn)
.

We are done.
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(ii) From the definition ofθ’s for anyk = 1, . . . , N − 1:

eθk = (−1)k
q(λk)

q(λ0)
.

Usingq(λk) = p′(λk)ρk we have

ρk = ρ0 eθk (−1)k
p′(λ0)

q(λ0)
.

It is easy to check that allρk > 0. There exists just oneρ0 such that
∑

ρn = 1. This
implies thatθ’s are coordinates and they are free. The theorem is proved. �

The fact that the isospectral setS(L0) is a diffeomorphic toRN−1 was already noted
by Moser[21]. Tomei[26] then showed thatS(L0) can be compactified and it becomes a
convex polyhedron. The symplectic interpretation of this result as a version of the Atiyah–
Guillemin–Sternberg convexity theorem was given by Bloch et al.[4].

Now for a functionw(λ) ∈ Rat′N with λ0 = 0 we consider the exponential representation
(3.2)

w(λ) = −1

λ
exp(Ξ(λ)),

and define another set of angles by the formula

θ′
k = lim

λ→λk

[
Ξ(λ) − Ξ(0) + log

λk − λ

λk

]
+ πi, k = 1, . . . , N − 1. (5.5)

This formula can be put in the form

θ′
k =

N−1∑
s=1,s �=k

∫ γs

λs

ωk +
∫ γk

∞−
ωk + πi.

Whence,θ′
k correspond to the Abel sum in the Baker form. The regularization is necessary,

because the term
∫ γk
λk

ωk diverges logarithmically on singular curveΓ . Furthermore, we
have simple relation

θk = θ′
k + πi(k − 1) + log

N−1∏
s=1,s �=k

λs − λk

λs

. (5.6)

The anglesθ andθ′ differ by the real quantity which depend on the curveonly. Evidently,
the variablesθ′ are coordinates onS(L0) and their range isRN−1.

6. The Poisson bracket on Weyl functions

Following [15], we consider functionsw(λ) with the properties: (i) analytic in the
half-planesIz > 0 andIz < 0. (ii) w(z̄) = w(z) if Iz �= 0. (iii) Iw(z) > 0 if Iz > 0. All
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such functions are calledR-functions. They play a central role in the theory of the resolvent
of self-adjoint operators. The Weyl function of a Jacobi matrix is anR-function.

Atiyah and Hitchin[2] introduced a Poisson structure on the space of rational functions.
In the recent paper[9], Faybusovich and Gehtman wrote Atiyah–Hitchin and higher Poisson
structures on rational functions in compact invariant form. They defined the Atiyah–Hitchin
bracket by the formula

{w(λ),w(µ)} = (w(λ) − w(µ))2

λ − µ
. (6.1)

Here we discuss some of its’ remarkable properties[27].
We think aboutw(λ) as an element of some commutative complex algebra which depends

holomorphically on the parameterλ. Evidently,(6.1) is skew-symmetric with respect toλ
andµ. It is natural and require linearity of the bracket

{aw(λ) + bw(λ),w(ν)} = a{w(λ),w(ν)} + b{w(λ),w(ν)}, (6.2)

wherea andb are constants. The symbolw(λ) for λ inside the contourC is given by the
Cauchy formula

w(λ) = 1

2πi

∫
C

w(ζ)

ζ − λ
dζ.

Whence due to(6.2) the values of the bracket in different points are related

{w(λ),w(µ)} = 1

2πi

∫
C

{w(ζ),w(µ)}
ζ − λ

dζ.

It can be verified that the bracket(6.1)satisfies this compatibility condition.
Also, it is natural to require for the bracket the Leibnitz rule

{w(λ)w(µ),w(ν)} = w(λ){w(µ),w(ν)} + w(µ){w(λ),w(ν)}. (6.3)

It can be verified in a long but simple calculation that(6.2) and (6.3)imply the Jacobi
identity

{w(λ), {w(µ),w(ν)}} + {w(µ), {w(ν),w(λ)}} + {w(ν), {w(λ),w(µ)}} = 0.

The particularly useful to us is an invariance of(6.1) under the group of linear-fractional
transformations

w → w′ = aw + b

cw + d
, (6.4)

wherea, b, c, andd are constants. This property will be used in the construction of the
second system of canonical coordinates.

In our study of finite Jacobi matrices we need a small subclass RatN ⊂ R. These are the
functions given by formula(5.1). All such functions have asymptotic expansion at infinity

w(λ) = − s0

λ
− s1

λ2
− · · · .
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We consider submanifold Rat′
N with s0 = 1, or equivalently,

∑
ρk = 1. We will demonstrate

that the Dirac restriction of the bracket(6.1) to this submanifold takes the form

{w(λ),w(µ)}′ = (w(λ) − w(µ))

(
w(λ) − w(µ)

λ − µ
− w(λ)w(µ)

)
. (6.5)

The linear Poisson structure on the phase spaceL is defined by the formulae

{ck, vk} = −ck

2
, {ck, vk+1} = ck

2
, (6.6)

and all other brackets vanish. Whence, the linear bracket(6.6)corresponds to the restriction
(6.5)of the AH structure on the submanifold Rat′

N .
Formula(6.5)can be used to define the Poisson structure(6.6). For example, substituting

(2.20)into (6.5), after simple algebra we obtain

2c0{v0, c0}
λ2µ2

(
1

µ
− 1

λ

)
+ · · · = c2

0

λ2µ2

(
1

µ
− 1

λ

)
+ · · · .

From this one can read the first identity:{c0, v0} = −c0/2.
A construction of canonical coordinates for the bracket(6.1) or (6.5) will be given in

terms of various representations for RatN and Rat′N .

7. Canonical coordinates on RatN : the Dirac reduction

We start with the construction of the first system of canonical coordinate on RatN for the
bracket(6.1). The next theorem shows that the parameters

λ0, . . . , λN−1, ρ0, . . . , ρN−1

in formula(5.1)are “almost” canonically paired.

Theorem 2. The bracket (6.1) in λ–ρ coordinates has the form

{ρk, ρn} = 2ρkρn

λn − λk

(1 − δnk), (7.1)

{ρk, λn} = ρkδ
n
k , (7.2)

{λk, λn} = 0. (7.3)

Proof. We representρ’s andλ’s as contour integrals

ρk = − 1

2πi

∫
Ok

w(ζ)dζ, ρkλk = − 1

2πi

∫
Ok

ζw(ζ)dζ.
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In both formulae the contourOk surroundingλk is traversed counterclockwise. Therefore,
for k �= n

{ρk, ρn} =
{

1

2πi

∫
Ok

w(ζ)dζ,
1

2πi

∫
On

w(η)dη

}
= 1

(2πi)2

∫
Ok

∫
On

{w(ζ),w(η)} dζ dη

= 1

(2πi)2

∫
Ok

∫
On

(w(ζ) − w(η))2

ζ − η
dζ dη

= 1

2πi

∫
Ok

dζ w2(ζ)

[
1

2πi

∫
On

dη
1

ζ − η

]
− 2

(2πi)2

∫
Ok

∫
On

w(ζ)w(η)

ζ − η
dζ dη

+ 1

2πi

∫
On

dηw2(η)

[
1

2πi

∫
Ok

dζ
1

ζ − η

]
. (7.4)

The two terms with square brackets vanish and for(7.4)we obtain

− 2

2πi

∫
dζ w(ζ)

[
1

2πi

∫
dη

w(η)

ζ − η

]
. (7.5)

For ζ in the exterior of the contourOp, we have

1

2πi

∫
Op

dη
w(η)

ζ − η
= ρp

λp − ζ
.

Applying this formula twice to(7.5)we obtain(7.1). If k = n then similar arguments show
that the bracket(7.1)vanishes.

To prove(7.2)we compute fork �= n

{λkρk, ρn} = 2λkρkρn

λn − λk

.

From another side,

{λkρk, ρn} = λk{ρk, ρn} + ρk{λk, ρn}.
This together with(7.1) imply that the bracket{λk, ρn} vanish. Fork = n we have
{λkρk, ρn} = −ρ2

k and{ρk, λk} = ρk. The formula(7.2) is proved.
To prove(7.3) for k �= n we compute

{λkρk, λnρn} = 2λkρkλnρn

λn − λk

.

From another side,

{λkρk, λnρn} = ρkρn{λk, λn} + ρkλn{λk, ρn} + ρnλk{ρk, λn} + λkλn{ρk, ρn}.
This together with formulae(7.1)–(7.3)imply that the bracket{λk, λn} vanishes. Fork = n

arguments are the same. The proof is finished. �

Therefore, for the bracket(6.1)on RatN canonical coordinates are associated with poles
of w(λ)

λ0, . . . , λN−1, q(λ0), . . . , q(λN−1).
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Indeed, from the identity

− q(λ)

p(λ)
=
∑ ρn

λn − λ
,

and conditionp(λn) = 0 we obtainq(λk) = p′(λk)ρk. Furthermore, using(7.2) and (7.3)

{q(λk), λn} = {p′(λk)ρk, λn} = p′(λk)ρkδ
n
k = q(λk)δ

n
k .

All other brackets vanish

{q(λk), q(λn)} = {λk, λn} = 0.

In this coordinate form the Poisson structure on RatN was introduced in[2]. These identities
imply

{q(λ), q(µ)} = {p(λ), p(µ)} = 0,

and

{q(λ), p(µ)} = q(λ)p(µ) − q(µ)p(λ)

λ − µ
.

The last expression is called a Bezontian, see[16]. This form of the bracket easily leads to
(6.1).

The second set of canonical coordinates on RatN is associated with zeros ofw(λ)

γ1, . . . , γN−1, p(γ1), . . . , p(γN−1), q0, p0.

To prove this, we introduce the new “dual” functionw′(λ) as an inverse of function(5.2)

w′(λ) = − 1

w(λ)
= p(λ)

q(λ)
.

Due to(6.4)the bracket for the dual function is given by formula(6.1). The new meromorphic
function maps the upper half-plane into itself and has the expansion

w′(λ) = λ

q0
+ c +

N−1∑
s=1

ρ′
s

γs − λ
,

where

c = p0q0 − q1

q2
0

= p0

q0
+

∑
γs

q0
, ρ′

s > 0.

Theorem 3. The following identities hold:

{ρ′
k, ρ

′
n} = 2ρ′

kρ
′
n

γn − γk
(1 − δnk), (7.6)

{ρ′
k, γn} = ρ′

kδ
n
k , (7.7)
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{γk, γs} = 0, (7.8)

{q0, ρ
′
k} = {q0, γs} = 0, (7.9)

{ρ′
k, p0} = ρ′

k, (7.10)

{p0, γs} = 0, (7.11)

{p0, q0} = q0. (7.12)

Proof. The identities(7.6)–(7.8)using integral representation

ρ′
k = − 1

2πi

∫
Ok

w′(ζ)dζ, ρ′
kγk = − 1

2πi

∫
Ok

ζw′(ζ)dζ

can be proved exactly the same way as identities (7.1)–(7.3) ofTheorem 2.
Let us compute the first bracket(7.9)

{q0, ρ
′
k} =

{
lim
λ→∞

λ

w′(λ)
,− 1

2πi

∫
Ok

w′(ζ)dζ

}

= lim
λ→∞

λ

2πiω′(λ)2

∫
Ok

(w′(λ) − w′(ζ))2

λ − ζ
dζ.

Expanding the square and computing each term separately we see that the bracket vanishes.
The proof of the second identity(7.9) is exactly the same.

To prove(7.10)we note

{c, ρ′
k} = {p0, ρ

′
k}

q0
− ρ′

k

q0
.

From another hand

{c, ρ′
k} =

{
lim
λ→∞

w′(λ) − λ

q0
,− 1

2πi

∫
Ok

w′(ζ)dζ

}

= lim
λ→∞

− 1

2πi

∫
Ok

(w′(λ) − w′(ζ))2

λ − ζ
dζ = −2ρ′

k

q0
.

Comparing it with the previous formula we obtain(7.10). The proof of formula(7.11) is
similar.

To prove the last formula(7.12)we compute

{p0, q0}
q0

= {c, q0} =
{

lim
λ→∞

w′(λ) − λ

q0
, q0

}
= lim

λ→∞

{
w′(λ), lim

µ→∞
µ

w′(µ)

}

= lim
λ→∞

lim
µ→∞ − µ

w′(µ)2

(w′(λ) − w′(µ))2

λ − µ
= 1.

This implies the result. The proof is finished.
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From(7.7)using the formulap(γs) = −ρ′
sq

′(γs) we obtain

{p(γn), γk} = p(γn)δ
k
n.

From(7.6), (7.7) and (7.9)

{p(γn), q(γk)} = 0.

From(7.9)

{p(γn), q0} = 0.

From(7.10) and (7.12)

{p(γn), p0} = 0.

These identities together with identities ofTheorem 3provide a proof of our statement.
This coordinate system is useful in construction of the Dirac restriction[8], of the AH

bracket(6.1)on the submanifoldM ⊂ RatN determined by the conditions

Φ1 = p0 = c1, Φ2 = logq0 = c2,

wherec1 andc2 are some real constants.
Consider a more general problem. The submanifoldM of dimension 2N−m is determined

by the conditions

Φ1 = c1, Φ2 = c2, . . . , Φm = cm,

whereΦ’s are some functions on the phase space andc’s are real constants. The bracket
{•, •} is modified

{F1, F2}′ = {F1, F2} +
m∑

k=1

σk{F1, Φk}

with σ’s chosen such that

Φ•
k = {Φk, F2} +

m∑
s=1

σs{Φk,Φs} = 0

for all k = 1, . . . , m. Geometrically, this condition means that the vector fields produced
in the bracket{•, •}′ are tangent toM. If the matrix‖{Φk,Φs}‖ has an inverse‖Cks‖, then
the last system can be solved forσ’s and

{F1, F2}′ = {F1, F2} +
m∑

k,s=1

{F1, Φk}Cks{F2, Φs}.

Implementing this procedure for our choice of functionalsΦ1 andΦ2 we obtain

σ1 = {logq0, F2}, σ2 = −{p0, F2},
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and

{F1, F2}′ = {F1, F2} + {logq0, F2}{F1, p0} − {p0, F2}{F1, logq0}.
One can easily verify that

{q(λ), q(µ)}′ = {p(λ), p(µ)}′ = 0.

Using{p0, q(λ)} = q(λ) and{p(µ), q0} = q(µ), we obtain

{q(λ), p(µ)}′ = q(λ)p(µ) − q(µ)p(λ)

λ − µ
+ q(µ)q(λ)

q0
.

Finally, we have

{w(λ),w(µ)}′ = (w(λ) − w(µ))

(
w(λ) − w(µ)

λ − µ
− w(λ)w(µ)

q0

)
.

This becomes(6.5) for a particular choiceΦ2 = logq0 = 0. �

8. The canonical coordinates on Rat′N

Now we turn to the submanifold Rat′
N with q0 = ∑

ρk = 1 and the Poisson bracket
(6.5). Here the situation is a little more subtle. In all formulae we omit the prime near the
bracket{•, •}′.

Theorem 4. The bracket (6.5) in λ–ρ coordinates has the form

{ρk, ρn} =

 2ρkρn

λn − λk

− 2ρkρn


∑

s �=k

ρs

λs − λk

−
∑
s �=n

ρs

λs − λn




 (1 − δnk), (8.1)

{ρk, λn} = −ρkρn + ρkδ
n
k , (8.2)

{λk, λn} = 0. (8.3)

Proof. The proof is similar to the proof ofTheorem 2and therefore is omitted. �

The theorem implies

{q(λk), λn} = −q(λk)ρn + q(λk)δ
n
k . (8.4)

Thus, we have the first system of canonical coordinates, the so-called the action–angle
variables

λ1, . . . , λN−1, θ1, . . . , θN−1, (8.5)

whereθ’s defined by(5.3)are real and canonically paired withλ’s. Indeed,(8.4) implies

{θk, λn} = (δnk − δn0).
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Formulae(8.1) and (8.4)produce

{logq(λk), logq(λn)} =
∑
s �=k

ρs + ρk

λk − λs

−
∑
s �=n

ρs + ρn

λn − λs

. (8.6)

This identity implies the commutativity of the angles:{θk, θn} = 0.
Using the theorem, it can be checked easily thatp0 = −∑

λk is a Casimir of the bracket
(6.5).

Evidently, for the restricted bracket(6.5)the canonical relations established inTheorem 3
survive. We have the second set of canonical variables on Rat′

N

γ1, . . . , γN−1, π1, . . . , πN−1, πk = log(−1)N+kp(γk). (8.7)

These divisor-quasimomentum coordinates were introduced in[18]. The denominatorp(λ) =
(−1)N

∏
(λn − λ) satisfies

(−1)N+kp(γk) > 0, k = 1, . . . , N − 1.

Whenceπ’s are real and canonically paired withγ ’s

{πn, γk} = δkn.

All other brackets vanish.
In the rest of this section we show that the variables(5.5)associated with representation

of w(λ) ∈ Rat′N in the exponential form(3.2)

w(λ) = −1

λ
eΞ(λ)

can be moved by correspondingλ’s

{θ′
k, λn} = δkn, k, n = 1, . . . , N − 1.

Though it follows from the previous discussion of the action–angle variables and formula
(5.6)we will give an independent proof of this fact. It is important to notice that we cannot
expect commutativity of the variablesθ′

n.
The multi-valued functionΞ(λ) has the formΞ(λ) = ∑N−1

s=1 log(γs − λ) − log(λs − λ)

and defined up to an integer multiple of 2πi. The bracket{•, Ξ(λ)} is single valued since
additive constant vanishes. The Poisson bracket(6.5) in terms of the functionΞ(λ) has the
form

{Ξ(λ),Ξ(µ)} = 4 sinh2(Ξ(λ) − Ξ(µ) − logλ + logµ/2)

λ − µ
+ 1

λ
eΞ(λ) − 1

µ
eΞ(λ)

or

{Ξ(λ),Ξ(µ)} = 1

w(λ)w(µ)

(w(λ) − w(µ))2

λ − µ
− w(λ) + w(µ), (8.8)

which is more convenient for calculations. The poleλk can be represented as a contour
integral

λk = − 1

2πi

∫
Ok

ζ dΞ(ζ) = −λ′
k + 1

2πi

∫
Ok

Ξ(ζ)dζ,
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whereλ′
k is an arbitrary fixed point on the contourOk surroundingλk. As a simple example

we prove commutativity ofλ’s

{λk, λn} = 1

(2πi)2

∫
Ok

∫
On

{Ξ(ζ),Ξ(η)} dζ dη.

From formula(8.8)one can easily see that the double integral vanishes.
Now for the anglesθ′

n we have

{θ′
k, λn} = lim

λ→λk

[
{Ξ(λ), λn} − {Ξ(0), λn} +

{
logλk − λ

λk

, λn

}]
.

The last term vanishes. The first two terms are more complicated

{Ξ(λ), λn} = 1

2πi

∫
On

{Ξ(λ),Ξ(ζ)} dζ = 1

2πi

∫
On

w(λ)

w(ζ)

dζ

λ − ζ
, (8.9)

− 2

2πi

∫
On

dζ

λ − ζ
, (8.10)

+ 1

2πi

∫
On

w(ζ)

w(λ)

dζ

λ − ζ
, (8.11)

− 1

2πi

∫
On

[w(λ) − w(ζ)] dζ. (8.12)

If λ → λk, k �= n or λ → λ0 = 0, the terms(8.9)–(8.11)vanish. The term(8.12)is equal
to −ρn. Therefore,

lim
λ→λk

{Ξ(λ), λn} = −ρn, k �= n, {Ξ(0), λn} = −ρn.

This implies{θ′
k, λn} = 0, k �= n.

Furthermore, ifλ → λn, then the term(8.9)becomes−1, the term(8.10)becomes 2 and
(8.11)vanishes. The term(8.12)is −ρn. Therefore,

lim
λ→λn

{Ξ(λ), λn} = 1 − ρn.

Thus{θ′
n, λn} = 1.

9. Tangent and transversal flows

Using the poles ofw(λ) we define HamiltoniansHj = (1/j)
∑

λ
j
n, j = 1, . . . , N.

The flows produced by them in the bracket(6.5) are tangent to the isospectral manifold:
{λk,Hj} = 0. Due toTheorem 4the standard[21] Toda flows have the form

ρ•
k = {ρk,Hj} =

(
λ
j−1
k −

∑
λj−1
n ρn

)
ρk, k = 0, . . . , N − 1.
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Toda flows commute{Hj,Hk} = 0 and linearized in the variables(8.5)

θ•
k = {θk,Hj} = (λ

j−1
k − λ

j−1
0 ), k = 1, . . . , N − 1.

Similarly, from zeros ofw(λ) we define another set of HamiltoniansTj = (1/j)
∑

γ
j
n, j =

1, . . . , N − 1. By Theorem 3the flows produced by these Hamiltonians do not affectγ ’s.
Therefore, we call these commuting flows transversal. They are linearized in the variables
(8.7)

π•
k = {πk, Tj} = γ

j−1
k , k = 1, . . . , N − 1.

This is an example of the situation similar to the one considered in physics[6,11]. Given
two systems of canonical coordinates and two families of commuting Hamiltonians. Each
family depends only on the half of the coordinates of the corresponding canonical system.
Hamiltonians of both families produce coordinate system for the Poisson manifold.

It is routine exercise to derive the equations of motion forγ ’s underH flows and forλ’s
underT flows. Then the inverse spectral problem can be solved using trace formulae of
Section 2. We do not dwell on this.
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