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Abstract

The dynamics of the finite nonperiodic Toda lattice is an isospectral deformation of the finite
three-diagonal Jacobi matrix. It is known since the work of Stieltjes that such matrices are in
one-to-one correspondence with their Weyl functions. These are rational functions mapping the
upper half-plane into itself. We consider representations of the Weyl functions as a quotient of two
polynomials and exponential representation. We establish a connection between these represen-
tations and recently developed algebraic-geometrical approach to the inverse problem for Jacobi
matrix. The space of rational functions has natural Poisson structure discovered by Atiyah and
Hitchin. We show that an invariance of the AH structure under linear-fractional transformations
leads to two systems of canonical coordinates and two families of commuting Hamiltonians. We
establish a relation of one of these systems with Jacobi elliptic coordinates.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Toda lattice is a mechanical system\bparticles connected by elastic strings. The
Hamiltonian of the system is

N-1 pz N-2
_ Tk k—qk+1
He Y Oy e
k=0 k=0
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Introducing the classical Poisson bracket
—~ of g 9f og
{fg= Za—a——a—a—,
=5 9k 0Pk Opk gk
we write the equations of motion as
qr = {qr. H} = px, Py ={pr, HY = —eli70t1 1740k - f=1 ... N —1
We putg_1 = —o0, gy = ooinall formulae. Following10,19]introduce the new variables
cp = elk—qur1/2, Vk = —pr.
In these variables
N-1 U2 N-2
k 2
H=) 5+ <
k=0 k=0
and
Ck Ck
{ck, v} = > {ck, vir1} = > (1.1)
The equations of motion take the form

¢k (Vg1 — k)
—

These equations are compatibility conditions for the Lax equdtfos: [A, L], where

2 2
U]::{vk,H}:Ck—Ck_l, C]::{Ck»H}:

Vo Co 0 ., 0
o M c1 cee 0
L= ,
0 CN-3 UN-2 CN-2
| 0 0 cy—2 vn—1 ]
and
0 o 0 0 ]
—co O c1 0
2A =
0 - —cn-3 0 CN-2
0 - 0 —cyo2 O |

The Lax formula implies that the spectrug < - - - < Ay—1 Of L remain fixed. Itis known
since the work of Stieltje25], that the rational functiom (1) = (R(1)38(0), §(0)), where
R(\) = (L — »D~Lis the resolvent, plays the key role in reconstruction of the mditrix
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from its spectral data. It was encountered later in the spectral theory of the Sturm—Liouwille
operator[28], and received the name of Weyl function. Simply by expanding it in the
continued fraction

1
wA) = — 2z )
0
A—1v0— 2
A—vl—ilz
N )
A—vp .“7)‘_”1\7:1

one can read the entries @&f This fact is central to Moser’s solution of the nonperi-
odic Toda[21]. At the same time Stielties method appears to be a computational trick
and does not provide a conceptual explanation why the funatiGy) actually deter-
minesL.

An attemptto solve an inverse spectral problem for the finite Jacobi matrix using algebraic-
geometrical approach was made at the beginning of 1980s by MdRehrit was realized
that the corresponding spectral curve is a singular reducible Riemann surface.

The recentinterest in the spectral curves of finite Toda lattice stems from various sources.
One is the work of Seiberg and Witt¢R3,24] on supersymmetric Yang—Mills theories.
The smooth hyperelliptic spectral curves of the periodic Toda appear in the pure gauge
N = 2 SUSY Yang—Mills models in four dimension$2]. The physically interesting
limit of the theory which corresponds to transition from the smooth hyperelliptic curve
to the singular one of McKeaf20] was considered ifi5]. Another source of interest
is the Camassa—Holm equati¢ry. It is known, se€[3,22], that the dynamics of the
so-called peakons solutions is isomorphic to an isospectral flow on the space of finite Jacobi
matrices.

A solution of nonperiodic Toda within algebraic-geometrical approach was obtained
recently in[18]. The poles ofw(1) determine the curve and the zeros specify the divi-
sor of the Baker—Akhiezer function. This information uniquely specifies the BA func-
tion and therefore the matrik. Whence that fact that(1) determines the matrix can be
considered as a consequence of the Riemann—Roch theorem which guarantees unique-
ness of the BA function. Using BA functions we obtained[18] the explicit formu-
lae for the solution, the symplectic structure and two systems of Darboux coordinates
for it.

The present paper combines ideas developg¥iwith algebraic-geometrical approach
of Krichever and Vaninsky18]. It can be divided into two parts. In the first part of the
paper Sections 2-pwe establish relations between the standard objects of spectral the-
ory and algebraic-geometrical constructions. We show how the BA function can be con-
structed from the orthogonal polynomial of the first kind and suitably normalized Weyl
solution. The rational functions which map the upper half-plane into itself are defined by the
formula

wl) = £0 PN-1

ey v

, px>0. (1.2)

They are parameterized byN2parameterso’s and A’s. The rational functions corre-
sponding to the Weyl functions of finite Jacobi matrices are specified by the condition

> =1
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We consider different representations of the Weyl functions. The first one, the ratio of
two monic polynomials,
)

p(»)

leads to the standard Abel map. Another, the exponential representation, which employs
Krein’s spectral shift functio§(z)

w(A) =

&(2)

w(A) = Y

dz

exp(E(L), &) =
ewEt). 50 = [
produces the Abel map in Baker’s form.

In the second parSections 68 we study the Atiyah—Hitchin bracket on rational func-
tions and its relation to the Hamiltonian formalism for the Toda lattice. As it was recently
discovered by Faybusovich and Gehtnj@} the AH bracket on rational functions can be
written as

(w() — w(w)?
A—L '
The bracke{1.1) corresponds to the restriction ¢f.3) on the (2V — 1)-dimensional sub-
manifold corresponding to Weyl functions &f x N Jacobi matrices. We show that the
restricted bracket has two systems of canonical coordinates on symplectic leafs of the fo-
liation defined by level sets of the Casin}if 1. The existence of these two canonical

coordinate systems is a consequence of invariance of the AH bracket under the group of
linear-fractional transformations

, _aw+b
Ccw4d
The first system of canonical coordinates is associated Mifioles ofw(X): Ag < -+ - <

An—1. The half of variables iv — 1 points of the spectrurug, ... , Ay—1. Another half
are the functions of (1) at these points

(—D*q(nk)
q(Xo)

This system is called action—angle coordinates. The verification of canonical relation is
obtained by computing residues. The associated Hamiltonians are

{w@), w(p)} = (1.3)

w — w

6r = log , k=1...,N—-1

1 .
HJ»:;Z,\g, j=1...,N.

They produce the standard Toda flows which preserve the spectrum.

The second system is coming fra¥h— 1 finite rootsy; < --- < yy—1 of the equation
£0 PN-1

4+ 4+ —=0.
A —Y AN-1—Y¥

The adjointN — 1 variables are

w(y) =

e =log(=)"*p(y), k=1,...,N -1
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These are the divisor-quasimomentum coordinates. The Hamiltonians of this system
are

1w ; .
Tj:jzy,{, j=1,...,N—-1

These Hamiltonians produce the flows transversal to the isospectral manifolds. These flows
preserve the divisor.

Now we will explain the origins of the divisor-quasimomentum coordinate system. Jacobi
[13, Lecture 26]introduced his famous elliptic coordinates as finite rogts 11 < - -+ <
yn—1 Of the equation

=1

£0 PN-1
it A —Y * AN-1—Y¥
TheseN roots are considered to be the functiong\oindependenp’s, while A’s remain
fixed. In the case of finite Jacobi matrices this choice of parametesdad. Due to the
constrain®_ pr = 1they are functionally dependent. The same is true for any other constant
instead of 1. Only for the special value 0 the equatidp) = 0 has one “unmovable” root
yo = oo and all otherV — 1 finite roots are functionally independent. Whence the divisor
can be considered as a variant of the Jacobi elliptic coordinates.

The transformatiom (1) — w'(1) = —1/w()) defines the dual Weyl function’. The
roots of the equations(y) = 0 become poles of the functian’(1). The invariance of
the AH structure allows to establish canonical character of the divisor-quasimomentum
coordinates again by computing residues.

We would like to conclude this section with the following remark. The traditional study of
integrable dynamics is part of Hamiltonian mechanics with its standard objects like Poisson
and symplectic manifolds, vector fields, differential forms, etc. We demonstrate in this paper
that integrable dynamics on the space of Jacobi matrices or equivalently Weyl functions can
be reformulated and studied purely in terms of complex analysis.

Organization of the paper. In Section 2 we review standard constructions of spectral
theory of three-diagonal Jacobi matricesSkection 3we introduce the spectral shift func-
tion and establish the trace formulae. 3ection 4 we consider the reducible Riemann
surface and show how the Baker—Akhiezer function can be constructed using the orthog-
onal polynomial of the first kind and suitably normalized Weyl solutionSéction 5 we
consider the representation of the Weyl function as a ratio of two polynomials and expo-
nential representation. We demonstrate how using these representations one can construct
the Abel map in the ordinary form and in the Baker form, correspondingly. We also de-
scribe the range of the map and show its’ one-to-one character. This section completes the
description of the spectral theory and its’ relation to algebraic geometB8edtion 6§ we
introduce the Atiyah—Hitchin Poisson bracket and describe some of its’ elementary prop-
erties. InSection 7we construct canonical variables for the AH bracket. We also construct
the Dirac restriction of the AH bracket on the submanifold of Weyl functions. We intro-
duce two systems of canonical coordinates for the restricted brackeicinon 8 We also
linearize the flow in terms of spectral shift functi@®ection 9describes the isospectral and
transversal flows.
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2. The direct spectral problem

Most of the material of this section can be foundlihand presented here in order to set

notations. Consider a finite Jacobi matrix

vo €0 0 0
c v1 1 0
L = :
0 CN-3 UN-2 CN-2
L O 0 cv—2 vy-—1]
It acts as a self-adjoint operator in the compl&0, N — 1] with standard orthonormal
basiss(k) = (...,1,...),k=0,..., N — 1. The operatol has simple spectrurg <
N ——— —
kth place
-+ < An—1 corresponding to normalized eigenvecte(s;) = (eo(rk), ..., en—1(Ak)),
k=0,...,N—1LetEQ) = },, _; e(Ax) ® e(Ar) be an orthogonal spectral measure of
L. Thus,
L= /AdE(Z), 2.1)
and
dE
RGY = (L—AD~t= f 9k 2.2)
Z—A
For any two vectorg, v the Parseval identity holds
. v) = Y (. e(h)) (v, e(hr)). (2.3)
k
We associate witli the eigenvalue problem
voyo + coy1 = Ao, (2.4)
coyo + viy1 + c1y2 = Ay1, (2.5)
Cn—1Yn—-1+UnYpn +CoYny1 =AYy, n=2,...,N—2,
CN—2YN—-2 + UN-1YN-1+ CN-1YN = AYN-1. (2.6)

The coefficient y—1 is defined by the formulay_1 = ,](V:_OZ G

we introduce the solution
P P_1(A) =0, Po(A) =1,..., Pv(D),

and for the syster(2.5) and (2.6)

1
QM) : Qo) =0, 01(1) = PREEE On ().

! Forthe syster{2.4)—(2.6)
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Let L, p) be the truncated matrix

Uk Ck e O
Ck  Vk+1 e 0
Likpy=| . . , - (2.7)
: : o cpet
Cp—1  Vp

Thenforn=1,2,....,.N -1

det(Ljo,n—1) — AD)
n—1 ’
k=0 Ck

Py(A) = (=D)" (2.8)

and

k=0 Ck
Now we will use the solution® and Q to give formula(2.3) more concrete form.
For P()) = (Po(A), ..., Py—1(2)) from (2.8) we have
1
e() = POk Pk = —— -
Yo PRG)

Qn ()\) =

(2.9)

(2.10)

Thus(2.3)takes the form

(u,v) = / aZ()D() do(h), (2.11)
where

u(r) = (u, PO)), v(A) = (v, P(2)), do(h) = 25@ — M) Pr-

Moreover, usingd2.10)we have
N-1
(). 30) = Vo >0, Y ;=1 (212)
k=0

This implies, in particular, that(0) is a cyclic vector forL.
For the Weyl function defined as

oy
Py(2)
formulae(2.8) and (2.9)mply
_(DVdetlpy-y -2 _ DY s -4
(—=DN det(L — A1) OV =)

where the roota andy interlace

w(A) =

w(A) =

(2.13)

AM<YL<A < - <AN—2<YN-1<AN-1 (2.14)

due to the Sturm theorem.
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By constructionQy + wPy = 0 for all A. Formulae(2.4)—(2.6)produce(L — A1)
(Q + wP) = 8(0) andQ + wP = R(1)8(0). Formula(2.2)implies

w() = (RS, 50 = [ GO IEDXO) _ / Go@) (2.15)
z—A Z—A
From(2.1)for the moments of the measure &e have
s = (L¥5(0), 8(0)) = / A da(n). (2.16)
Using(2.12)
wk) =—Y_ s,A” "D where so = 1. (2.17)

We conclude this section with derivation of trace formulae. To simplify notations we assume
thatig = 0. Then,(2.13)becomes

wi) = —= ]_[ (Z’;: > (2.18)

After simple algebra,
Yk —
=1+
ne z

Furthermore,

AT (Ak

o0
ve) _ZA”x P, where A2 =1
p=0

o0

N-1
wk)=-Y_ > [T ag [»*.

n=0 | p1+-+pn-1=n k=1

Comparing it with(2.17)we obtain the trace formulae

N-1

pit-+pyn_1=n k=1

The first few are listed below

S1=ZA]]C', s2=ZA,%+ Z Al%lAl:clg’
k k

ki#ka
3 2 A1 1 A1 41
SS:ZAIC+2 Z AklAk2+ Z AklAkZAkS"” .
k ki#k2 k1 #ka#k3

To derive the standard trace formuldd] from the resolvent expansion

I
(L _apto_t_ L B
RG) =LAD"t =— ,
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we obtain
_ (15(0),58(0)  (L8(0), (0)) (L?5(0), 8(0))
wAd) = — — — _ ,
A A2 A3
1 v v+ c?
wh) = —=— == 0)\3_0 — (2.20)

Matching the coefficients i(2.17) and (2.2Q)

=Y AL =) A=) (AP
k k k

3. The trace formulae via Krein spectral shift

We assume,g = 0, then(2.13)becomes

1 det(Lpyn-11 — AD)
rdet(L|KerLt —AD’

wh) = — (3.1)

whereL [Ker L is a restriction of. on the orthogonal compliment to Kér By elementary
transformations the ratio of two determinants can be put in the form

B = S S = L
wih)=-3 LI (ks —A) - _XEszszl / P
_ 1 N &(z)
= kexp(u()»))_ Aexp/Z_/\dz, (3.2)
wheré

§(z) =npkerpt(2) =nry v g (2)

is the Krein spectral shift functigi 7]. This exponential representation of the Weyl function
has much wider range of applicability then form(8al), which requires separate existence
of determinants in the numerator and denominator. It can be obtained, for example, for
infinite unbounded matrices under very mild condition on closenesg of) andL |Ker L.

One can obtain trace formulae in termsfpf= [ 7*&(z) dz entering into the asymptotic
expansion

oo
_ Z fnk—(n+l)_
n=0
Expanding the exponent {3.2) and matching the coefficients witB.17)

3
51 = — fo, 52 = fo - f1, S3=f0f1—f—f—g,~--~

1 11 (z) is a counting functiony; (z) = #{eigenvaluesof. < z}.
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Evidently, these formulae can be put in the fof119) using representation ¢fz) as a
difference of two counting functions.

4. The spectral curve: the Baker—Akhiezer function

The functionw()) determines the matrix or in another words the functions(1) =
w(X, L) are coordinates on the spa€ef all N x N Jacobi matrices. The “index’ which
labels the “coordinates” takes the value€ih spec L. This statement goes back to Stieltjes
[25]. There are two standard ways to recogefrom w. The first is to expanay (1) into
continued fraction, from which one can read the coefficiert.ofhe second is to construct
polynomials orthogonal with respect to the spectral measure recoveredftomA three
term recurrent relation for these polynomials is, in fact, the mdtriRecently, the classical
inversion problem, received a new, algebro-geometrical sol{ii®j The main novel part
of Krichever and Vaninsky18] is, the so-called, Baker—Akhiezer function foreglucible
curve. This construction is described below.

We start with the standard Wey! solutigh+ wP and note thatQ + wP)/w is a solution
of (2.5) and (2.6Wwhich is equal to 1 at = 0 and vanishes at = N for all A. The vector
P is also a solution of2.5) and (2.6which is equal to 1 for = 0 and all values of and
vanishes at = N for A = A;. Thus we have a “gluing” condition

POy = 2P

(M. (4.1)

In other words, at the points of the spectrum the functigh) conjugates two solution8
and Q + wP which vanish at the leftn = —1) or right (n = N) correspondingly.

Fig. 1. Riemann surface.
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The singular algebraic curve (Fig. 1) is obtained by gluing at the points of the spectrum
two copies of the complex plane. Define Baker—Akhiezer functior"dmy the formula,
A= Ale):

POV if eerl,
Y(e) =
Q+wP .
w(A)

The functiony is continuous o™ due to the gluing conditiofd.1). The BA function has

the only simple poles at the points of the diviget, —), ..., (¥nv—1, —). At two infinities

the BA function has poles of prescribed order. These data determine the BA function and
therefore the operatdt. Thus, the uniqueness statement can be viewed as a consequence
of the Riemann—Roch theorem. This remark completes the description of the direct spectral
problem. The inverse problem can be solved using an explicit formula for the time-dependent
BA function (for details, segl8]).

5. The Abel map and the Jacobian

Let Raty be a set of all rational functions which map the upper half-plane into itself,
vanish at infinity and hav&/ poles. Any functiorw () from Raty has the form

N-1 0
wi) =3y~ k - (5.1)
k=0 "k

with real poles afp < --- < Ay—1 andp; > 0. Fora real below/above the spectrum the
functionw(X) is positive/negative. Furthermore,

/ Pk
=2 G e

andw(A) continuously changes from minus infinity to plus infinity, whienuns between
two consecutive poles. Thus the functioh) has exactlyv — 1 zerosy’s which interlace
A’s as in formula(2.14)

Furthermore, any function from Raican be represented as a ratio of two polynomials

a0) _ qo=DN TN s - )
p() DN IV — 1)
I S R L
AW+ poaN=14 . fpyg
The polynomials are defined up to a multiple factor. In form{@a) it is chosen such
that the leading coefficient of the denominator is 1, similaf2td 3) Evidently, the poly-
nomial g(A) can be determined from its’ valuegio), ..., q¢(Ax—1) Which arefree
parameters.

Now we turn to the submanifold Ratwith " o = 1. These are the functions from
Raty which are Weyl functions of finite Jacobi matrices. The valg@s), ..., g(An—_1)

w(A) =

(5.2)
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are not independent anymore. Indeed, from the identity
JA) 5 o
p()\) )\n —A '
and conditionp(%,,) = 0 we obtaing(Ar) = p’(Ax)ox. Therefore,
Z q(hn)
AR )
Due to the relationjgp = ) px, an another way to say thai(x) € Rat, is that the
polynomialg(i) in (5.2)is a monic polynomial.
For a functionw(i) € Raty, we define angle variables by the formula
—Dkg(n
e =log "D AP g N1 (5.3)
q(2o0)
There are exactly roots ofg(r) betweeng andi; and it changes sigh times whem
varies fromig to A;. Whence variableg's are always real.
To clarify geometrical meaning of the variablés we introduce Fig. 2) a standard

homology basis on the curvécorresponding to some Jacobi matrix. We define differentials
wi by the formula

1 1
wy = — dz, k=1,...,N—1.
zZ—MA  Z—AQ

Evidently, the normalization condition holds

/ a)k=27ri8][:, k,kp=1,...,N -1,
ap

Fig. 2. Basis of circles.
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while b-periods ofw’s are real and infinite. For the variabléswve have

6 = ik + |qu()»k) —logq(ro0)
1 N-1 Vs
= mik + / dz = 7k + / : >4
=7 Z [Z—)\.k Z_)LO] =T ; oo—wk &4

Thereforeg's are the values of the Abel map from the divisar . .. , yy_1 into RN~1,
the noncompact real part of the Jacobian. It will be shown that this map is onto.

Fix some matrixLg. All matrices with the same spectrurp < --- < Ay—_1 asLo
constitute a spectral class bf, which we denote bys(Lg). The spectral clasS(Lg) is in
1:1 correspondence with Weyl functions from Rat

N-1
w(h) = . Y=L
n= O
Theorem 1.

(i) The variables y1, ..., yn—1 are coordinates on S(Lo). Any sequence of y’s which
occupies open segments Ax—1 < ¥k < Ak, k = 1,..., N — 1 corresponds to some
matrix from S(Lo).

(i) Thevariablesé, ..., 6y_1 arecoordinateson S(Lg). Any sequence of 6’ s from RN-1

corresponds to some matrix from S(Lo).

Proof.

(i) The variableg’s determine the roots @f(1) and therefore the function(i). Whence,
y's are coordinates.
To prove thay'’s are free pick any sequence)dé and formg (). Then, by Lagrange
interpolation

g qgry) 1
p(A) Zp(k ) dn — A

It is easy to check alb, = g(A,)/p’(A,) are strictly positive. It remains to prove that
> pn = 1. Indeed, the formula

N-1
An A
sy = 3 40 )
n=0 p

/()Vn) )\ - )\n
implies
o 4V q(An) P _ q(An)
L= =, 2 PO ANI00—a,) 2 P

We are done.
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(i) From the definition ob’s foranyk=1,..., N — 1:

eek — (_1)]( q()"k) )
q(%0)
Usingg(Ar) = p' (i) pr we have

P (Ao)
q(ro)

It is easy to check that aliy > 0. There exists just ongy such that) " p, = 1. This
implies thatY’s are coordinates and they are free. The theorem is proved. O

pr = po € (=D

The fact that the isospectral s8¢Lo) is a diffeomorphic toRV~1 was already noted
by Moser[21]. Tomei[26] then showed tha$(L) can be compactified and it becomes a
convex polyhedron. The symplectic interpretation of this result as a version of the Atiyah—
Guillemin—Sternberg convexity theorem was given by Bloch gel.

Now for a functionw(i) € Raty, with 1o = 0 we consider the exponential representation
(3.2)

1
w(d) = Y exp(E(2)),

and define another set of angles by the formula
A — A

Oileirr} [E(A)—S(O)+Iog ]—i-ni, k=1,...,N—-1 (5.5)
—> Ak

This formula can be put in the form

N-1
Vs Yk

=3 / wk+/ ox + .
s=1,55k V7 -

Whenceg, correspond to the Abel sum in the Baker form. The regularization is necessary,
because the terry‘iﬁk wy diverges logarithmically on singular curvé. Furthermore, we
have simple relation

N—1
Ak

. Mg —
O =0, +mitk—1 +log [] T (5.6)
s=1,s#k §

The angle® and¢’ differ by the real quantity which depend on the cuonty. Evidently,
the variable®’ are coordinates ofi(Lo) and their range i®"V 1.

6. The Poisson bracket on Weyl functions

Following [15], we consider functionsv(i) with the properties: (i) analytic in the
half-planesiz > 0 andJz < 0. (ii) w(z) = w(z) if Iz #£ 0. (iii) Jw(z) > 0if Iz > 0. All
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such functions are calle®-functions. They play a central role in the theory of the resolvent
of self-adjoint operators. The Weyl function of a Jacobi matrix iRafiunction.

Atiyah and Hitchin[2] introduced a Poisson structure on the space of rational functions.
Inthe recent papg®], Faybusovich and Gehtman wrote Atiyah—Hitchin and higher Poisson
structures on rational functions in compact invariant form. They defined the Atiyah—Hitchin
bracket by the formula

(W) — w(w))?

(w0, ww) = ==—

(6.1)
Here we discuss some of its’ remarkable propef@&s.

We think aboutv(1) as an element of some commutative complex algebra which depends
holomorphically on the parametgr Evidently,(6.1)is skew-symmetric with respect 0
andu. Itis natural and require linearity of the bracket

{aw() + bw ), w()} = afw®), wW)} + b{w(), wv)}, (6.2)

wherea andb are constants. The symbwl(A) for A inside the contou€ is given by the
Cauchy formula

_ 1 [ w®
wih) = 2ni Joe C— A dg.

Whence due t@6.2) the values of the bracket in different points are related

1 k]
{w), ww)} = 5= M d

271 Jc L—A &

It can be verified that the brackg. 1) satisfies this compatibility condition.
Also, it is natural to require for the bracket the Leibnitz rule

{ww), w)} = w){w), wW)} + w){w), w)}. (6.3)

It can be verified in a long but simple calculation tl{&t2) and (6.3)mply the Jacobi
identity

{w@), {w(w), ww)}} + {w(w), fwv), wA)H + {wW), {w®), w()}} = 0.

The particularly useful to us is an invariance(6f1) under the group of linear-fractional
transformations
, _aw+b

w—w = ,
cw—+d

(6.4)

wherea, b, ¢, andd are constants. This property will be used in the construction of the
second system of canonical coordinates.

In our study of finite Jacobi matrices we need a small subclasg RaR. These are the
functions given by formul#5.1). All such functions have asymptotic expansion at infinity
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We consider submanifold Ratvith so = 1, orequivalently) "~ o = 1. We willdemonstrate
that the Dirac restriction of the brack@ 1) to this submanifold takes the form

we) —w(w)

{w), ww) = WR) — ww) ( Py

WG ). 6.5)
The linear Poisson structure on the phase spgaisedefined by the formulae

C C
{ck, v} = —Ek, {cks vt} = Ek (6.6)
and all other brackets vanish. Whence, the linear brgéké}corresponds to the restriction
(6.5) of the AH structure on the submanifold Rat

Formula(6.5)can be used to define the Poisson structir@). For example, substituting
(2.20)into (6.5), after simple algebra we obtain

2co{vo, 1 1 2 /1 1
Zolvo.co} (1 1), q (1 1y,
Au? o \po A Ap?\pn o A
From this one can read the first identifyy, vo} = —co/2.

A construction of canonical coordinates for the bradiel) or (6.5) will be given in
terms of various representations for Rand Raf;.

7. Canonical coordinates on Rat : the Dirac reduction

We start with the construction of the first system of canonical coordinate gnfBiethe
bracket(6.1). The next theorem shows that the parameters

AOs oy AN, £0s -+ -y PN—1

in formula(5.1) are “almost” canonically paired.

Theorem 2. The bracket (6.1)in A—p coordinates has the form

2

{0k, pu} = —XP_ (1 _ g1, (7.1)
An — Ak

{0k, An} = Pi8Ys (7.2)

{Ar. Ay} = 0. (7.3)

Proof. We represenp’s and\’s as contour integrals

0w e [ o
pk——zni/OkWE) ¢, Pire = —5 Oké“wé“) ¢
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In both formulae the contou?, surrounding; is traversed counterclockwise. Therefore,
fork #n

1 1 1
(oK, P} = {g/@ w(?) dg, Z_Jﬂ/o,, w(n) dn} :W/ok /On{w(;“),w(n)}dcdn

_ 1 (w() — w(m)?
2ri)? Jo, Jo, {—n

1 2 [ 1 3 w(;“)w(n)
= 2 Okdgw(o[zm /o,,dnf—n} <2nu>2/0k/

1 N 1
+ i [ <n>[2 |/ & — n} (7.4)

The two terms with square brackets vanish andfot) we obtain

- [l 2]

For ¢ in the exterior of the contoup,, we have

d¢dn

L[ g e
27l 0, c—n )Lp —¢
Applying this formula twice tq7.5)we obtain(7.1). If £ = » then similar arguments show

that the brackef7.1) vanishes.
To prove(7.2)we compute fok £ n

2\ k Pk Pn
p—
From another side,

{Akok, on} =

{Akok, on} = Ml ok, on) + prdAk, ol

This together with(7.1) imply that the brackef{iy, p,} vanish. Fork = n we have
{McPrs pn} = —p? and{px, Ax} = px. The formula(7.2)is proved.
To prove(7.3)for k # n we compute

2 Pk A Pn

A ,A =
{ k Pk nlon} oy — Mk
From another side,

{Ak0k> Anon} = PkPuirics An} + prrniric, on} + pudid ok, A} + Aedu{ok, pu}-

This together with formulaér.1)—(7.3)imply that the brackeftr;, A,,} vanishes. Fok = n
arguments are the same. The proof is finished. O

Therefore, for the bracké6.1) on Rafy canonical coordinates are associated with poles
of w(A)

AQ, ..oy AN—1, qxo), ..., q(An—_1).
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Indeed, from the identity
q(}) _ Pn
pa)_zjm—x’

and conditionp(1,,) = 0 we obtaing(Ax) = p’(Ax)ox. Furthermore, using7.2) and (7.3)

{qO), A} = {P' ) pics An} = P/ (i) P8 = q(Aie) S}
All other brackets vanish
{g ), )} = {Ax, An} = 0.

In this coordinate form the Poisson structure on\Raas introduced ifi2]. These identities
imply

{gV), ()} = {p(1), p(w)} = 0,

and
A — A
mummw=4Uﬂ? 9P
—u
The last expression is called a Bezontian,[46¢. This form of the bracket easily leads to
(6.1).

The second set of canonical coordinates onyRatlssociated with zeros af(1)

Y1, -5 YN—1, Py, ..., p(¥yn-1), q0, Po.
To prove this, we introduce the new “dual” functiari(L) as an inverse of functiofb.2)

L _ 0

W= T

Due to(6.4)the bracket for the dual function is given by form(fal). The new meromorphic
function maps the upper half-plane into itself and has the expansion

/

Ps
Vs_k,

A N-1
w)=—+c+ Z
q0 1

where

czpoqo—q1=@+2

5 Vs’ oL > 0.
) q0 q0

s

Theorem 3. The following identities hold:
2011
Yn — Yk
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{ve, s} =0, (7.8)
{q0, pi} = {90, vs} = 0, (7.9)
{Pk> PO} = Py (7.10)
{po, s} =0, (7.11)
{po. g0} = qo. (7.12)

Proof. The identitieq7.6)—(7.8)using integral representation
/ 1 / /( ) d / _ 1 f /( ) d
Py = o o0 w'($) d¢, PrYk = i o, Sw (¢ d¢

can be proved exactly the same way as identities (7.1)—(7 By@brem 2
Let us compute the first brack@t.9)

Ao lim A L[
(4o, pk}_{lleoo o /0 kw(;)d;}
’ o 2
. .x (w(A) —w(Q) d
=00 27ia) (M) Jo, A=

Z.

Expanding the square and computing each term separately we see that the bracket vanishes.
The proof of the second identity.9)is exactly the same.
To prove(7.10)we note

{po.oi}  pi

{c, pi} = :
q0 q0

From another hand

. , A 1 ,
{6,01/(}={A|Lmoow(?»)——,—ﬁ w(;)dc}

qo Oy
L L[ W0 —w@? 2
T oo 271 Jo, A—¢ T q

Comparing it with the previous formula we obtgin10) The proof of formula(7.11)is
similar.
To prove the last formulér.12)we compute

{po. qo0}

- {C’ C]O} - {Ali—>moo w/(k) N %’ CIO} - Ali—>moo {w/(k)’ ulinoo w’(,u) }
’ o/ 2
— lim lim — % w @) —ww) =
r—oop—>00  w ()2 A—pu

1

This implies the result. The proof is finished.



302 K.L. Vaninsky/ Journal of Geometry and Physics 46 (2003) 283-307
From(7.7)using the formulap(ys) = —p,q'(vs) we obtain

(P, vkt = p(ra)8h.
From(7.6), (7.7) and (7.9)

{P(Wn), q(v)} = 0.
From(7.9)

{p(vn), qo} = 0.
From(7.10) and (7.12)

{p(¥n), po} = 0.

These identities together with identitiesTdieorem Jorovide a proof of our statement.
This coordinate system is useful in construction of the Dirac restri¢8hrof the AH
bracket(6.1) on the submanifold/ C Raty determined by the conditions
@1 = po = c1, @2 =logqgo = c2,

wherec1 andcy are some real constants.
Consider amore general problem. The submanifélaf dimension 2V —m is determined
by the conditions

P =c1,P2=1c2,..., Py = Cp,

where®’s are some functions on the phase space@mdre real constants. The bracket
{e, o} is modified

m
{F1, F2Y = {F1, Fa} + ) _ ox{F1, 1)
k=1

with o’s chosen such that

m
®f = (D4, F2} + ) _ os(®r, @) =0
s=1

forallk = 1, ..., m. Geometrically, this condition means that the vector fields produced
in the brackefe, o}’ are tangent ta/. If the matrix||{®x, @,}|| has an invers¢Cys||, then
the last system can be solved tds and

m
(F1, F2Y = {F1, F2} + Y _ {F1. ®4}Cisl Fa, ®5).
k,s=1

Implementing this procedure for our choice of function@lsand @, we obtain

o1 = {logqo, F2}, o2 = —{po, F2},
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and
{F1, F2)' = {F1, F2} 4 {logqo, F2}{F1, po} — {po, F2}{F1,10gqo}.
One can easily verify that
{g), qw)Y = {p(), p(w)} = 0.
Using{po, g(A)} = g(») and{p(n), g0} = g(1), we obtain

qA) p(u) — q(p) p(X) n q(u)g(r)

{g), p(w)}) = ;
— i q0

Finally, we have

A) — A
(W), w)) = k) — w(w)) ("’( ) mw@w)  wl )w(’”).

A—u q0
This become$6.5) for a particular choic&2, = loggo = 0. O

8. The canonical coordinates on Rg
Now we turn to the submanifold Ratwith go = > px = 1 and the Poisson bracket
(6.5). Here the situation is a little more subtle. In all formulae we omit the prime near the

bracket{e, o}’.

Theorem 4. The bracket (6.5)in A—p coordinates has the form

20k Pn Ps Ps
, Pn} = — 20kPn - 1-38p), 8.1
{Pxs pn} {M—Ak Ok (Z/\s_)% Z/\S_/\n)}( 1) (8.1)

sk sn
{oks An} = —prpn + PSy, (8.2)
{Aks An} = 0. (8.3)
Proof. The proof is similar to the proof cfheorem 2and therefore is omitted. O

The theorem implies
{qi), A} = =gl on + (M) 8- (8.4)

Thus, we have the first system of canonical coordinates, the so-called the action—-angle
variables

A, .. ANZ1, 61,...,0N_-1, (8.5)
wheref'’s defined by(5.3) are real and canonically paired witfs. Indeed,(8.4)implies

{0k, An} = (8 — &p)-
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Formulae(8.1) and (8.4produce

Ps + Pk Ps + Pn
{logg(1). logq(r,)} = E FoRa § PO (8.6)
sk k — Ms sn n — As

This identity implies the commutativity of the angl€g;, 6,,} = O.

Using the theorem, it can be checked easily fiiat — ) _ A is a Casimir of the bracket
(6.5).

Evidently, for the restricted brack@.5)the canonical relations establishedimeorem 3
survive. We have the second set of canonical variables dp Rat

V1o ooy YN—1, L, .. IN-1, 7 = log(—=)" ™ p(yp). (8.7)
These divisor-quasimomentum coordinates were introdudé8jnThe denominatop(i) =
=DV [Tnn — 1) satisfies

)" p(y) >0, k=1,...,N—1.

Whencer'’s are real and canonically paired wii's

{7tn, v} = 8.
All other brackets vanish.

In the rest of this section we show that the varial§feS) associated with representation
of w() € Raty in the exponential forni3.2)

1 -
A =—=e"W
w(2) ;

can be moved by correspondints
O a) =08 kn=1..N-1

Though it follows from the previous discussion of the action—angle variables and formula
(5.6)we will give an independent proof of this fact. It is important to notice that we cannot
expect commutativity of the variablés.

The multi-valued functiorE'(1) has the formz'(A) = Zﬁvz‘ll log(ys — A) —log(rs — 2)
and defined up to an integer multiple ofi2 The bracket{e, Z (1)} is single valued since
additive constant vanishes. The Poisson bragké&)in terms of the functior&' (1) has the
form

4sinh?(E()) — E(w) — logx + log 1/2) e _ 1w

(200, B} = e - -

or

1w —w@)?
{EQ), E(w} = —w) +w(w), 8.8
" wA)w(p) A—p . 88)
which is more convenient for calculations. The pajecan be represented as a contour
integral

A——i/ dv()——x+i/ 2(2)d
k=52 OkCuC— kKt o OkuC g
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wherei, is an arbitrary fixed point on the conto@y surrounding.;. As a simple example
we prove commutativity ok’s

(* M—L/ / (2(0). En)) de d
CE T @ni2 o, Jo, ' P "

From formula(8.8) one can easily see that the double integral vanishes.
Now for the angle#,, we have

. A
{0 An) = A“_)ﬁlk [{E(A), M} —{EQ0), A} + {logf\k E /\n” :

The last term vanishes. The first two terms are more complicated

(B, ) = %/o,,{m)’ 20} dg = %/O %% 8.9)
_%/0 % (8.10)
+2ini 5 %% (8.11)
—%/On[w(k) —w(y)]de. (8.12)

If A > A,k #nori — Ao = 0, the termg8.9)—(8.11)vanish. The tern{8.12)is equal
to —p,. Therefore,

lim {2, A} = —pus k#n, {80), ) = —py.
)‘_))‘k

This implies{#;, A,} = 0,k # n.
Furthermore, ik — A, then the tern8.9)becomes-1, the term(8.10)becomes 2 and
(8.11)vanishes. The teri8.12)is —p,. Therefore,

Ali—>n1,,{E()\)’ )wz} =1- Pn-

Thus{6),, A} = 1.

9. Tangent and transversal flows

Using the poles ofw(1) we define Hamiltoniang?; = (1/)) Z/\l;, j=121...,N.
The flows produced by them in the brack6t5) are tangent to the isospectral manifold:
{’x, H;} = 0. Due toTheorem 4he standard1] Toda flows have the form

. ji—1 i—
pt= o ) = (3= Y40 ) o k=0 N-1
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Toda flows commuté¢H;, Hx} = 0 and linearized in the variablg8.5)
o =16, Hy= ' =2, k=1,...,N-1

Similarly, from zeros oiv(1) we define another set of Hamiltoniafis= (1//) ) y,{, j=

1, ..., N — 1. By Theorem 3he flows produced by these Hamiltonians do not affést
Therefore, we call these commuting flows transversal. They are linearized in the variables
(8.7)

m={m. Ty=y] 5, k=1,...,N—-1

This is an example of the situation similar to the one considered in phigicE]. Given
two systems of canonical coordinates and two families of commuting Hamiltonians. Each
family depends only on the half of the coordinates of the corresponding canonical system.
Hamiltonians of both families produce coordinate system for the Poisson manifold.

It is routine exercise to derive the equations of motiomfsrunderH flows and fori’s
underT flows. Then the inverse spectral problem can be solved using trace formulae of
Section 2We do not dwell on this.
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